含PVA废水处理工艺探讨
含PVA废水处理工艺探讨聚乙烯醇(PVA)是一种水溶性高分子聚合物,具有良好的黏附性、机械性能和稳定性,广泛应用于纺织、食品和医药等行业。但PVA属于典型的难生物降解高分子物质,其
聚乙烯醇(PVA)是一种水溶性高分子聚合物,具有良好的黏附性、机械性能和稳定性,广泛应用于纺织、食品和医药等行业。但PVA属于典型的难生物降解高分子物质,其废水COD高,可生化性差,直接排放会严重污染水体。简要介绍了PVA的生产分布和污染特征;统计分析了国内外关于含PVA废水处理的相关文献;综述了含PVA废水物化、生物及其组合工艺处理的研究现状;总结了含PVA废水处理的典型工程案例;揭示了当前工程应用中存在的若干问题以及行业发展方向。
聚乙烯醇(PVA)作为一种重要的工业原料,具有良好的物理和化学性能,被广泛用于涂料、黏合剂、纸品加工剂、乳化剂、分散剂和薄膜等产品的生产,应用范围遍及纺织、食品、医药、建筑、木材加工、造纸、印刷、农业、钢铁、高分子化工等行业。
近年来,全球尤其是我国纺织行业、高档造纸业、石油开采业以及汽车工业和建筑业的蓬勃发展,推动了PVA产能的剧增。据统计,2005年世界PVA总产能为138.0万t,2013年增至213.3万t,其中中国约占26.82%。我国PVA行业经过40多年的发展,已成为世界上最大的PVA生产国,2016年我国PVA产能为124.6万t,约占世界总产能的一半以上。从PVA的行业需求来看,最大的是聚合助剂和织物浆料生产行业,分别占38%和20%。预计到2020年,我国对PVA的总需求量将高达约80.0万t,约占全球总需求量的48.48%。
PVA会对环境造成污染,不是因为它的毒性(其本身是无毒的),而是因为其难生物降解。其较大的表面活性会使被污染的水体表面泡沫增多,黏度加大,对水体的复氧行为极为不利,从而抑制水生生物的呼吸活动。另外,含PVA的废水排入水体还会促进河流、湖泊和海洋沉积物中重金属的释放和迁移,增强其活性,引起更严重的环境问题。
目前,常用的含PVA废水的处理方法主要包括物化法、生物法及其组合工艺。物化法最早用于含PVA废水的处理,如化学凝结法,迄今已有30余年;2000年以后,絮凝法和高级氧化技术相继一度成为研究热点;近年来,膜分离技术在处理含PVA废水方面开始崭露头角。随着人们对物化法的纵深研究,其所带来的高成本和二次污染等问题日益凸显。为此,许多研究人员开始聚焦于含PVA废水的生物法处理及组合工艺处理,尤其从2005年之后逐渐成为研究热点。笔者基于国内外文献统计,较为系统地综述了含PVA废水的处理现状;同时,结合现有工程案例运行情况,探讨了含PVA废水处理工艺可能存在的问题和未来发展趋势。
1 文献统计
分别基于《中国期刊CNKI全文数据库》和Web of ScienceTMcore collection〔v.5.27.2〕电子资源,检索了有关含PVA废水处理的中外文献,其中中文190余篇(检索年限1982年至2017年)、外文120余篇(检索年限1985年至2017年),其主要涵盖了小试研究、中试试验和工程应用类论文。
对检索得到的文献的统计分析表明,对于含PVA废水的处理,国内研究最多的是物化法(主要包括絮凝法、化学凝结法、膜分离技术、高级氧化法等),占53%,其中以高级氧化法为主,占21%;其次是生物法(主要包括高效降解菌生物降解法、厌氧生物法、水解酸化法和好氧生物法),占26%,其中以高效降解菌生物降解法为主,占16%。与之不同的是,国际上研究最多是生物法(主要包括高效降解菌生物降解法、厌氧生物法),占比54%,其中以高效降解菌生物降解法为主,占46%,厌氧生物法占8%,值得一提的是,水解酸化法和好氧生物法未见相关文献报道;其次是物化法(主要包括膜分离技术、高级氧化法等),占40%,同样主要以高级氧化法为主,占32%。由此可见,高级氧化法和高效降解菌生物降解法是当前国内外研究的主流。
2 研究现状
01 物化法
(1)絮凝法
由于含PVA废水成分复杂,利用单一的絮凝剂处理难以发挥作用,通过联合使用多种絮凝剂可取得不错的处理效果。张洪荣等通过向调节混凝池中投加絮凝剂PAC和有机高分子助凝剂P30处理COD和BOD5分别为2 697、415 mg/L的含PVA废水,COD和BOD5去除率分别为44.68%和15.67%,可生化性由0.15提升到0.24。顾春雷等用自制的新型聚硅酸硫酸铝复合絮凝剂处理COD为22 736 mg/L的退浆废水,COD去除率达到73%。
近年来,有研究者将电化学法与传统絮凝法相结合发明了铁碳微电解法,其原理是电极反应生成的具有高活性的产物能够与体系中一些难降解污染物发生氧化还原反应,从而达到降解污染物的目的。肖冠南等采用铁碳微电解法处理含PVA废水,COD和PVA去除率可分别达到65%、85%以上。电絮凝法无需外加混凝剂,但需消耗大量电能,且电极易钝化,因此实际应用不多。
从机理上讲,絮凝法处理含PVA废水主要归因于金属氢氧化物的吸附和共沉淀作用,由于吸附和共沉淀能力有限,因此絮凝法只适用于含PVA浓度较高的废水的预处理。
(2)化学凝结法
基于盐析作用的化学凝结法(即向废水中投加无机盐电解质,由于电解质离子具有很强的水合能力而结合大量的水分子,当电解质离子浓度足够大时,可以使废水中的PVA分子因脱水而析出,从而回收PVA并达到降低COD的目的)处理含PVA废水,可获得较高的PVA回收率。徐竟成等采用化学凝结法(以硼砂为凝结剂,硫酸钠为盐析剂)处理含PVA废水,PVA回收率和COD去除率均达80%左右。
郭丽等采用化学凝结法处理低浓度含PVA废水(PVA<5 g/L)时发现,析出的PVA不容易形成大的凝胶团,有相当一部分是以微小胶体颗粒的形态悬浮于水中,难以被去除或收集。而且,回收的PVA因残余部分凝结剂,性能受到一定影响。化学凝结法会消耗大量的凝结剂与盐析剂,处理后水中盐浓度也较高,不利于后续生物处理,其常作为浓度较高、组分单一的含PVA废水的预处理。
(3)膜分离技术
膜分离技术因具有过程简单、分离系数大、无相变、高效、节能等优点而被广泛应用。其中通过超滤技术从废水中回收PVA的研究应用最为广泛。于奕峰等采用超滤膜处理实际退浆废水,结果表明,在最优条件下超滤膜对PVA的截留率为96%,COD由23 000 mg/L降低到5 700 mg/L。范苏等以多通道α-Al2O3陶瓷微滤膜为支撑体,采用溶胶凝胶法制备了完整TiO2超滤膜,其对退浆废水中PVA的截留率达到99%以上。A. Sarkar等采用新型高剪切超滤膜组件从退浆废水中回收PVA,PVA截留率达到95%以上。
尽管膜分离技术设备简单,操作方便,对PVA有很高的回收率,但其存在膜孔易堵塞、膜系统成本高、膜使用寿命短等缺陷,阻碍了它的工程推广。
(4)高级氧化法
近年来,一些研究人员在利用高级氧化法处理含PVA废水方面做了一些研究,其主要类型包括Fenton类氧化法、电化学氧化法、臭氧类氧化法、光催化氧化法、超临界水氧化法、超声氧化降解法、硫酸根自由基氧化法等。不同类型高级氧化法处理含PVA废水的效果见表1。
由表1可以看出,高级氧化法对PVA的适用浓度宽泛(10~1 000 mg/L),对PVA的降解率均很高(94.4%以上),有些甚至可以完全降解,且降解时间短。除采用超临界水氧化法外(温度为440 ℃),温度范围为23~30 ℃,能耗不算太高。但高级氧化法需额外投加化学试剂(如投加酸碱试剂调节pH,投加铁粉和过氧化氢等氧化剂,硫酸根自由基氧化法需投加过硫酸盐类试剂等),有些还需提供额外能耗(如电化学氧化法需要提供电能,臭氧类氧化法需要提供臭氧,光催化氧化法需要提供一定频率的光源,超临界水氧化降解法需要提供高温高压的环境,超声氧化降解法需要提供超声波源等),并会产生二次污染,增加维护成本,这些成为高级氧化法大规模工程应用的瓶颈。
02 生物法
生物法是利用微生物的新陈代谢作用来降解废水中的PVA,具有运行费用低、无二次污染等优点。处理含PVA废水采用的生物法一般包括高效降解菌生物降解法、厌氧生物法、水解酸化法和好氧生物法。
(1)高效降解菌生物降解法
自然界中PVA降解菌比较稀少且非常敏感,其生长条件很苛刻,一旦受到破坏,将很难恢复,故需要通过驯化富集PVA高效降解菌以获得良好的处理效果。为此,国内外相关研究人员在驯化富集PVA高效降解菌方面做了一些研究,见表2。
从表2可知,大多数PVA降解菌为假单胞菌(Pseudomonad)或鞘氨醇单胞菌(Sphingomonads)。鞘氨醇单胞菌最初只有一个属〔鞘氨醇单胞菌属(Sphingomonas)〕,直到M. Takeuchi等将它们重新归类为4个属(Sphingomonads、Sphingobium、Novosphingobium和Sphingopyxis)。此外,一些革兰氏阴性菌(Alcaligenesfaecalis)和革兰氏阳性菌(Bacillusamyloliquefaciens)以及一些真菌〔如青霉属(Penicilliumsp.)〕作为PVA降解菌也具有重要作用。采用高效降解菌生物降解法处理含PVA废水,当初始PVA质量分数为0.1%~0.5%,培养周期为2~12 d时,PVA降解率基本上在90%以上,有些甚至高达100%。由此可见,高效生物降解菌对PVA有很好的降解效果。
尽管PVA高效降解菌对PVA的降解率较高,但由于PVA降解菌种类不多、酶活性不高、提取不易以及培养周期较长等原因,严重影响了PVA高效降解菌的筛选与扩增,致使其应用仍面临不小的挑战。
(2)厌氧生物法、水解酸化法和好氧生物法
厌氧生物法、水解酸化法和好氧生物法处理含PVA废水的效果见表3。
由表3可知,采用单一厌氧生物法或水解酸化法处理含PVA废水的效果并不理想;而采用单一好氧生物法尽管可以达到比较高的COD和PVA去除率,但进水COD不宜太高,且需要材料膜或生物膜作为支撑,其经济性和稳定性有待进一步验证。为此,许多研究者进行了由单一生物法逐步拓展至不同生物法联用处理含PVA废水的研究,见表4。
由表4可知,采用生物法联用处理含PVA废水,当进水COD为768~1 300 mg/L,PVA为53~420 mg/L,厌氧工段HRT为12~24 h,好氧工段HRT为6~30 h时,COD去除率达74.50%~95.00%,PVA去除率达73.50%~99.00%。针对COD较高的含PVA废水(COD 6 800~14 000 mg/L),相较单一生物法处理(COD去除率26.67%~45.00%),生物法联用中的厌氧或水解酸化段可将呈悬浮和胶体状的难降解有机物PVA水解成可溶性物质,提高了含PVA废水的可生化性,从而提高了后续生物好氧处理效果和整个生物处理系统对PVA等的去除率(COD去除率69.13%~97.95%)。由此,人们再将物化法与这些生物法联用工艺耦合用于处理含PVA废水,催生了不少工程应用案例。
3 应用现状
现有工程应用中多采用物化法+生物法耦合工艺处理含PVA废水,其中物化法主要以气浮和混凝居多,常用于预处理或深度处理;生物法主要采用厌氧生物法或水解酸化法与好氧生物法的组合工艺。含PVA废水处理工程应用案例见表5。
由表5可知,有些处理规模高达24 000 m3/d。当进水COD为500~3 500 mg/L时,物化法处理单元的COD去除率为83.29%~84.68%,生物法处理单元的COD去除率为75.97%~90.00%,COD总去除率可达82.00%~96.30%。
4 结语与展望
综上所述,对于含PVA废水的处理,物化法中絮凝法和化学凝结法建设投资及能耗费用相对较低,且操作简单,PVA浆料可回收利用,但需消耗大量化学试剂并产生大量污泥;膜分离技术操作简便,不需要投加化学试剂,但存在膜污染、投资和运行费用较高等问题;高级氧化法PVA去除率高且反应周期短,但运行费用较高,操作难度较大,致使相关工程案例并不多见。生物法中高效降解菌生物降解法高效且环保,但技术欠成熟;厌氧生物法、水解酸化法和好氧生物法对含PVA废水的处理具有一定的效果,是值得推广的绿色技术。
迄今已有不少采用物化+生物组合工艺处理含PVA废水的工程案例,但由于PVA可生化性极差,经现有物化+生物组合工艺处理后的出水COD仍难达到《污水综合排放标准》(GB 8978—1996)的一级排放标准要求,出水中PVA可能占比较大。因此,未来应着重分析出水COD中PVA的贡献率,并引入PVA降解菌,筛选高效PVA降解菌株,改造修饰菌株基因,构建高表达菌株,研制组配降解率高的混合菌菌剂,同时优化现有工艺组合,提升工艺效能,最终实现含PVA废水的达标排放。此外,值得一提的是,目前针对含PVA废水处理的研究与应用多集中于纺织行业,今后宜着力加强对该行业含PVA废水处理技术的研发,充分发挥行业引领作用。
使用微信““”
-
长江流域182个水生生物保护区全面禁捕2019-11-28
-
关于煤化工废水处理技术应用分析2019-11-27
-
以污染物为“食” 微生物带来废水处理新思路2019-11-27
-
煤化工废水COD分析方法的研究2019-11-26
-
又一政策支持 这些光伏生物质能等项目可享受豁免2019-11-23
-
提高含油废水水质指标的管理探讨2019-11-22
-
工厂偷排废气废水现象给环境造成的影响?2019-11-20
-
煤气化废水处理技术及其应用进展2019-11-19
-
鱼缸里放什么生物滤料2019-11-18
-
生物过滤系统包括什么?2019-11-16
-
哈尔滨取缔一塑料黑加工点 “三无”企业废水直排2019-11-09
-
最新|国家发改委:生物质能全领域进入鼓励类目录!2019-11-07
-
物化法处理松脂加工废水案例分析2019-11-07
-
明明可以就地取材 农村清洁取暖为啥不用生物质能2019-11-06
-
高浓度超稠油乳化废水预处理工艺与实践2019-11-04